Современная теория измерений и экспертные оценки. Какпроводить анализ собранных рабочей группой ответов экспертов? Для более углубленного рассмотрения проблем экспертных оценок понадобятся некоторые понятия так называемой репрезентативной теории измерений (глава 2.1), служащей основой теории экспертных оценок, прежде всего той ее части, которая связана с анализом заключений экспертов, выраженных в качественном (а не в количественном) виде.

Репрезентативная (т.е. связанная с представлением отношений между реальными объектами в виде отношений между числами) теория измерений (в дальнейшем сокращенно РТИ) является одной из составных частей эконометрики . А именно, она входит в состав статистики объектов нечисловой природы . Нас РТИ интересует прежде всего в связи с развитием теории и практики экспертного оценивания, в частности, в связи с агрегированием мнений экспертов, построением обобщенных показателей (их называют также рейтингами).

Получаемые от экспертов мнения часто выражены в порядковой шкале , т.е. эксперт может сказать (и обосновать), что один тип продукции будет более привлекателен для потребителей. Чем другой, одинпоказатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Поэтому экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или, точнее, неубывания) интенсивности интересующей организаторов экспертизы характеристики.

Ранг - это номер (объекта экспертизы) в упорядоченном ряду. Формально ранги выражаются числами 1, 2, 3, ..., но весьма важно то, что с этими числами нельзя делать привычные арифметические операции. Например, хотя 2 + 3 = 5, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении (в другой терминологии - ранжировке), интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет всерьез утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не обычная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Эта другая теория и есть РТИ. Основы РТИ рассмотрены в главе 2.1.

Рассмотрим в качестве примера применения результатов теории измерений, связанных со средними величинами в порядковой шкале, один сюжет, связанный с ранжировками и рейтингами.

Методы средних баллов. В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и иные опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п. Затем рассчитывают средние баллы и рассматривают их как интегральные (т.е. обобщенные, итоговые) оценки, выставленные коллективом опрошенных экспертов. Какими формулами пользоваться для вычисления средних величин? Ведь средних величин существует, как мы знаем, очень много разных видов.

Обычно применяют среднее арифметическое . Специалисты по теории измерений уже около 30 лет знают, что такой способ некорректен , поскольку баллы обычно измерены в порядковой шкале (см. выше). Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их привычности и распространенности . Поэтому представляется рациональным использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с общенаучной концепцией устойчивости , рекомендующей применять различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок.

Пример сравнения восьми проектов. Рассмотрим конкретный пример применения только что сформулированного подхода.

По заданию руководства фирмы анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы. Они обозначены следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, включенным в экспертную комиссию, организованную по решению Правления фирмы. В приведенной ниже табл.1 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с представлением экспертов о целесообразности включения проекта в стратегический план фирмы. При этом эксперт присваивает ранг 1 самому лучшему проекту, который обязательно надо реализовать. Ранг 2 получает от эксперта второй по привлекательности проект, ... , наконец, ранг 8 - наиболее сомнительный проект, который реализовывать стоит лишь в последнюю очередь.

Таблица 1.

Ранги 8 проектов по степени привлекательности

для включения в план стратегического развития фирмы

№ эксперта

Примечание. Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5.

Анализируя результаты работы экспертов (т.е. упомянутую таблицу), члены аналитической подразделения Рабочей группы, анализировавшие ответы экспертов по заданию Правления фирмы, были вынуждены констатировать, что полного согласия между экспертами нет, а потому данные, приведенные в таблице, следует подвергнуть более тщательному математическому анализу.

Метод средних арифметических рангов. Сначала для получения группового мнения экспертов был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам (см. табл. 1). Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), исходя из принципа - чем меньше средний ранг, чем лучше проект. Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4) /2 = 3,5. Дальнейшие результаты приведены в табл. 2 ниже.

Итак, ранжировка по суммам рангов (или, что то же самое, по средним арифметическим рангам) имеет вид:

Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К. (1)

Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку проекты Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (1) имеет одну связь.

Метод медиан рангов. Значит, наука сказала свое слово, итог расчетов - ранжировка (1), и на ее основе предстоит принимать решение? Так был поставлен вопрос при обсуждении полученных результатов на заседании Правления фирмы. Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил то, о чем шла речь выше. Он вспомнил, что ответы экспертов измерены в порядковой шкале, а потому для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан.

Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать – «в порядке возрастания», но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин «неубывание»). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.

Таблица 2.

Результаты расчетов по методу средних арифметических

и методу медиан для данных, приведенных в таблице 1.

Сумма рангов

Среднее арифметическое рангов

Итоговый ранг по среднему арифметическому

Медианы рангов

Итоговый ранг по медианам

Медианы совокупностей из 12 рангов, соответствующих определенным проектам, приведены в предпоследней строке табл.2. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение комиссии экспертов по методу медиан приведено в последней строке таблицы. Ранжировка (т.е. упорядочение - итоговое мнение комиссии экспертов) по медианам имеет вид:

Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б. (2)

Поскольку проекты Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. с точки зрения математической статистики ранжировка (4) имеет одну связь.

Сравнение ранжировок по методу средних арифметических и методу медиан. Сравнение ранжировок (1) и (2) показывает их близость (похожесть). Можно принять, что проекты М-К, Л, Сол упорядочены как М-К < Л < Сол, но из-за погрешностей экспертных оценок в одном методе признаны равноценными проекты Л и Сол (ранжировка (1)), а в другом - проекты М-К и Л (ранжировка (2)). Существенным является только расхождение, касающееся упорядочения проектов К и Г-Б: в ранжировке (3) Г-Б < К, а в ранжировке (4), наоборот, К < Г-Б. Однако эти проекты - наименее привлекательные из восьми рассматриваемых, и при выборе наиболее привлекательных проектов для дальнейшего обсуждения и использования на указанное расхождение можно не обращать внимания.

Рассмотренный пример демонстрирует сходство и различие ранжировок, полученных по методу средних арифметических рангов и по методу медиан, а также пользу от их совместного применения.

Метод согласования кластеризованных ранжировок. Проблема состоит в выделении общего нестрогого порядка из набора кластеризованных ранжировок (на статистическом языке - ранжировок со связями). Этот набор может отражать мнения нескольких экспертов или быть получен при обработке мнений экспертов различными методами. Предлагается метод согласования кластеризованных ранжировок, позволяющий «загнать» противоречия внутрь специальным образом построенных кластеров (групп), в то время как упорядочение кластеров соответствует одновременно всем исходным упорядочениям.

В различных прикладных областях возникает необходимость анализа нескольких кластеризованных ранжировок объектов. К таким областям относятся прежде всего экология, инженерный бизнес, менеджмент, экономика, социология, прогнозирование, научные и технические исследования и т.д., особенно те их разделы, что связаны с экспертными оценками (см., например, ). В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. Кластеризованные ранжировки могут быть получены как с помощью экспертов, так и объективным путем, например, при сопоставлении математических моделей с экспериментальными данными с помощью того или иного критерия качества. Описанный ниже метод был разработан в связи с проблемами химической безопасности биосферы и экологического страхования .

В настоящем пункте рассматривается метод построения кластеризованной ранжировки, согласованной (в раскрытом ниже смысле) со всеми рассматриваемыми кластеризованными ранжировками. При этом противоречия между отдельными исходными ранжировками оказываются заключенными внутри кластеров согласованной ранжировки. В результате упорядоченность кластеров отражает общее мнение экспертов, точнее, то общее, что содержится в исходных ранжировках.

В кластеры заключены объекты, по поводу которых некоторые из исходных ранжировок противоречат друг другу. Для их упорядочения необходимо провести новые исследования. Эти исследования могут быть как формально-математическими (например, вычисление медианы Кемени (о ней – ниже), упорядочения по средним рангам или по медианам и т.п.), так и требовать привлечения новой информации из соответствующей прикладной области, возможно, проведения дополнительных научных или прикладных работ.

Введем необходимые понятия, затем сформулируем алгоритм согласования кластеризованных ранжировок в общем виде и рассмотрим его свойства.

Пусть имеется конечное число объектов, которые мы для простоты изложения будем изображать натуральными числами 1,2,3,...,k и называть их совокупность «носителем». Под кластеризованной ранжировкой, определенной на заданном носителе, понимаем следующую математическую конструкцию . Пусть объекты разбиты на группы, которые будем называть кластерами. В кластере может быть и один элемент. Входящие в один кластер объекты будем заключать в фигурные скобки. Например, объекты 1,2,3,...,10 могут быть разбиты на 7 кластеров: {1}, {2,3}, {4}, {5,6,7}, {8}, {9}, {10}. В этом разбиении один кластер {5,6,7} содержит три элемента, другой - {2,3} - два, остальные пять - по одному элементу. Кластеры не имеют общих элементов, а объединение их (как множеств) есть все рассматриваемое множество объектов (весь носитель).

Вторая составляющая кластеризованной ранжировки - это строгий линейный порядок между кластерами . Задано, какой из них первый, какой второй, и т.д. Будем изображать упорядоченность с помощью знака < . При этом кластеры, состоящие из одного элемента, будем для простоты изображать без фигурных скобок. Тогда кластеризованную ранжировку на основе введенных выше кластеров можно изобразить так:

А = [ 1 < {2,3} < 4 < {5,6,7} < 8 < 9 < 10 ] .

Конкретные кластеризованные ранжировки будем заключать в квадратные скобки. Если для простоты речи термин "кластер" применять только к кластеру не менее чем из 2-х элементов, то можно сказать, что в кластеризованную ранжировку А входят два кластера {2,3} и {5,6,7} и 5 отдельных элементов.

Введенная описанным образом кластеризованная ранжировка является бинарным отношением на носителе - множестве {1,2,3,...,10}. Его структура такова. Задано отношение эквивалентности с 7-ю классами эквивалентности, а именно, {2,3}, {5,6,7}, а 5 классов остальные состоят из оставшихся 5 отдельных элементов. Затем введен строгий линейный порядок между классами эквивалентности.

Введенный математический объект известен в литературе как "ранжировка со связями" (М. Холлендер, Д.Вулф), "упорядочение" (Дж. Кемени, Дж. Снелл), "квазисерия" (Б.Г.Миркин), "совершенный квазипорядок" (Ю.А.Шрейдер ). Учитывая разнобой в терминологии, было признано полезным ввести собственный термин "кластеризованная ранжировка", поскольку в нем явным образом названы основные элементы изучаемого математического объекта - кластеры, рассматриваемые на этапе согласования ранжировок как классы эквивалентности, и ранжировка - строгий совершенный порядок между ними (в терминологии Ю.А.Шрейдера ).

Следующее важное понятие - противоречивость . Оно определяется для четверки - две кластеризованные ранжировки на одном и том же носителе и два различных объекта - элементы того же носителя. При этом два элемента из одного кластера будем связывать символом равенства = , как эквивалентные.

Пусть А и В - две кластеризованные ранжировки. Пару объектов (a,b) назовем «противоречивой»относительно кластеризованных ранжировок А и В, если эти два элемента по-разному упорядочены в А и В, т.е. a < b в А и a > b в В (первый вариант противоречивости) либо a >b в А и a < b в В (второй вариант противоречивости). Отметим, что в соответствии с этим определением пара объектов (a,b ), эквивалентная хотя бы в одной кластеризованной ранжировке, не может быть противоречивой: эквивалентность a = b не образует "противоречия" ни с a < b , ни с a > b . Это свойство оказывается полезным при выделении противоречивых пар.

В качестве примера рассмотрим, кроме А , еще две кластеризованные ранжировки

В = [{1,2} < { 3,4, 5} < 6 < 7 < 9 < {8, 10}],

C = .

Совокупность противоречивых пар объектов для двух кластеризованных ранжировок А и В назовем «ядром противоречий»и обозначим S(A,B). Для рассмотренных выше в качестве примеров трех кластеризованных ранжировок А , В и С , определенных на одном и том же носителе {1, 2, 3,..., 10}, имеем

S (A ,B ) = [(8, 9)], S (A ,C) = [(1, 3), (2,4)],

S (B ,C ) = [(1, 3), (2, 3), (2, 4), (5, 6), (8,9)].

Как при ручном, так и при программном нахождении ядра можно в поисках противоречивых пар просматривать пары (1,2), (1,3), (1,4), .... , (1,k ), затем (2,3), (2,4), ..., (2,k ), потом (3,4), ..., (3, k ), и т.д., вплоть до последней пары (k -1, k ).

Пользуясь понятиями дискретной математики, «ядро противоречий» можно изобразить графом с вершинами в точках носителя. При этом противоречивые пары задают ребра этого графа. Граф для S (A ,B ) имеет только одно ребро (одна связная компонента более чем из одной точки), для S (A ,C ) - 2 ребра (две связные компоненты более чем из одной точки), для S (B ,C ) - 5 ребер (три связные компоненты более чем из одной точки, а именно, {1, 2 , 3, 4}, {5, 6} и {8, 9}).

Каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать матрицей ||x (a ,b )|| из 0 и 1 порядка k x k . При этом x (a ,b ) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x (b,a ) = 0, а во втором x (b,a ) = 1. При этом хотя бы одно из чисел x (a,b ) и x (b,a ) равно 1. Из определения противоречивости пары (a, b ) вытекает, что для нахождения всех таких пар достаточно поэлементно перемножить две матрицы ||x (a,b )|| и ||y (a,b )||, соответствующие двум кластеризованным ранжировкам, и отобрать те и только те пары, для которых x(a,b )y (a,b ) = x (b,a )y (b,a )=0.

Предлагаемый алгоритм согласования некоторого числа (двух или более) кластеризованных ранжировок состоят из трех этапов. На первом выделяются противоречивые пары объектов во всех парах кластеризованных ранжировок. На втором формируются кластеры итоговой кластеризованной ранжировки (т.е. классы эквивалентности - связные компоненты графов , соответствующих объединению попарных ядер противоречий). На третьем этапе эти кластеры (классы эквивалентности) упорядочиваются . Для установления порядка между кластерами произвольно выбирается один объект из первого кластера и второй - из второго, порядок между кластерами устанавливается такой же, какой имеет быть между выбранными объектами в любой из рассматриваемых кластеризованных ранжировок. (Если в одной из исходных кластеризованных ранжировок имеет быть равенство, а в другой – неравенство, то при построении итоговой кластеризованной ранжировки используется неравенство.)

Корректность подобного упорядочивания, т.е. его независимость от выбора той или иной пары объектов, вытекает из соответствующих теорем, доказанных в статье .

Два объекта из разных кластеров согласующей кластеризованной ранжировки могут оказаться эквивалентными в одной из исходных кластеризованных ранжировок (т.е. находиться в одном кластере). В таком случае надо рассмотреть упорядоченность этих объектов в какой-либо другой из исходных кластеризованных ранжировок. Если же во всех исходных кластеризованных ранжировках два рассматриваемых объекта находились в одном кластере, то естественно считать (и это является уточнением к этапу 3 алгоритма), что они находятся в одном кластере и в согласующей кластеризованной ранжировке.

Результат согласования кластеризованных ранжировок А , В , С ,... обозначим f(А, В, С ,...). Тогда

f (А, В ) = ,

f (А, С ) = [{1,3}<{2, 4}<6<{5,7}<8<9<10],

f(В, С ) = [{1,2,3,4}<{5,6}<7<{8,9}<10],

f (А, В, С ) = f (В, С ) = [{1,2,3,4} <{5,6}<7<{8, 9}<10].

Итак, в случае f (А, В ) дополнительного изучения с целью упорядочения требуют только объекты 8 и 9. В случае f (А, С ) кластер {5,7} появился не потому, что относительно объектов 5 и 7 имеется противоречие, а потому, что в обеих исходных ранжировках эти объекты не различаются. В случае f(В , С ) четыре объекта 1,2,3,4 объединились в один кластер, т.е. кластеризованные ранжировки оказались настолько противоречивыми, что процедура согласования не позволила провести достаточно полную декомпозицию задачи нахождения итогового мнения экспертов.

Рассмотрим некоторые свойства алгоритмов согласования.

1. Пусть D = f (А , В , C ,...). Если a в согласующей кластеризованной ранжировке D , то a или a=b в каждой из исходных ранжировок А , В , C , ..., причем хотя бы в одной из них справедливо строгое неравенство.

2. Построение согласующих кластеризованных ранжировок может осуществляться поэтапно. В частности, f (A,B,C ) = f (f (A,B ), f (A ,C ), f (B,C )). Ясно, что ядро противоречий для набора кластеризованных ранжировок является объединением таких ядер для всех пар рассматриваемых ранжировок .

3. Построение согласующих кластеризованных ранжировок нацелено на выделение общего упорядочения в исходных кластеризованных ранжировках. Однако при этом некоторые общие свойства исходных кластеризованных ранжировок могут теряться. Так, при согласовании ранжировок В и С , рассмотренных выше, противоречия в упорядочении элементов 1 и 2 не было - в ранжировке В эти объекты входили в один кластер, т.е. 1 = 2, в то время как 1<2 в кластеризованной ранжировке С . Значит, при их отдельном рассмотрении можно принять упорядочение 1<2. Однако в f (В,C ) они попали в один кластер, т.е. возможность их упорядочения исчезла. Это связано с поведением объекта 3, который "перескочил" в С на первое место и "увлек с собой в противоречие" пару (1, 2), образовав противоречивые пары и с 1, и с 2. Другими словами, связная компонента графа, соответствующего ядру противоречий, сама по себе не всегда является полным графом. Недостающие ребра при этом соответствуют парам типа (1, 2), которые сами по себе не являются противоречивыми, но "увлекаются в противоречие" другими парами.

4. Необходимость согласования кластеризованных ранжировок возникает, в частности, при разработке методики применения экспертных оценок в задачах экологического страхования и химической безопасности биосферы. Как уже говорилось, популярным является метод упорядочения по средним рангам, в котором итоговая ранжировка строится на основе средних арифметических рангов, выставленных отдельными экспертами . Однако из теории измерений известно (см. главу 2.1), что более обоснованным является использование не средних арифметических, а медиан. Вместе с тем метод средних рангов весьма известен и широко применяется, так что просто отбросить его нецелесообразно. Поэтому было принято решение об одновременном применении обеих методов. Реализация этого решения потребовала разработки методики согласования двух указанных кластеризованных ранжировок.

5. Область применения рассматриваемого метода не ограничивается экспертными оценками. Он может быть использован, например, для сравнения качества математических моделей процесса испарения жидкости. Имелись данные экспериментов и результаты расчетов по 8 математическим моделям. Сравнивать модели можно по различным критериям качества. Например, по сумме модулей относительных отклонений расчетных и экспериментальных значений. Можно действовать и по другому: в каждой экспериментальной точке упорядочить модели по качеству, а потом получать единые оценки методами средних рангов и медиан. Использовались и иные методы. Затем применялись методы согласования полученных различными способами кластеризованных ранжировок. В результате оказалось возможным упорядочить модели по качеству и использовать это упорядочение при разработке банка математических моделей, используемого в задачах химической безопасности биосферы.

6. Рассматриваемый метод согласования кластеризованных ранжировок построен в соответствии с методологией теории устойчивости , согласно которой результат обработки данных, инвариантный относительно метода обработки, соответствует реальности, а результат расчетов, зависящий от метода обработки, отражает субъективизм исследователя, а не объективные соотношения.

Основные математические задачи анализа экспертных оценок. Ясно, что при анализе мнений экспертов можно применять самые разнообразные статистические методы, описывать их - значит описывать практически всю прикладную статистику. Тем не менее можно выделить основные широко используемые в настоящее время методы математической обработки экспертных оценок - это проверка согласованности мнений экспертов (или классификация экспертов, если нет согласованности) и усреднение мнений экспертов внутри согласованной группы.

Поскольку ответы экспертов во многих процедурах экспертного опроса - не числа, а такие объекты нечисловой природы, как градации качественных признаков, ранжировки, разбиения, результаты парных сравнений, нечеткие предпочтения и т.д., то для их анализа оказываются полезными методы статистики объектов нечисловой природы.

Почему ответы экспертов часто носят нечисловой характер? Наиболее общий ответ состоит в том, что люди не мыслят числами. В мышлении человека используются образы, слова, но не числа. Поэтому требовать от эксперта ответ в форме чисел - значит насиловать его разум. Даже в экономике предприниматели, принимая решения, лишь частично опираются на численные расчеты. Это видно из условного (т.е. определяемого произвольно принятыми соглашениями, обычно оформленными в виде инструкций) характера балансовой прибыли, амортизационных отчислений и других экономических показателей. Поэтому фраза типа «фирма стремится к максимизации прибыли» не может иметь строго определенного смысла. Достаточно спросить: «Максимизация прибыли - за какой период?» И сразу станет ясно, что степень оптимальности принимаемых решений зависит от горизонта планирования (на экономико-математическом уровне этот сюжет рассмотрен в монографии ).

Эксперт может сравнить два объекта, сказать, какой из двух лучше (метод парных сравнений), дать им оценки типа "хороший", "приемлемый", "плохой", упорядочить несколько объектов по привлекательности, но обычно не может ответить, во сколько раз или на сколько один объект лучше другого. Другими словами, ответы эксперта обычно измерены в порядковой шкале, или являются ранжировками, результатами парных сравнений и другими объектами нечисловой природы, но не числами. Распространенное заблуждение состоит в том, что ответы экспертов стараются рассматривать как числа, занимаются "оцифровкой" их мнений, приписывая этим мнениям численные значения - баллы, которые потом обрабатывают с помощью методов прикладной статистики как результаты обычных физико-технических измерений. В случае произвольности "оцифровки" выводы, полученные в результате обработки данных, могут не иметь отношения к реальности. В связи с "оцифровкой" уместно вспомнить классическую притчу о человеке, который ищет потерянные ключи под фонарем, хотя потерял их в кустах. На вопрос, почему он так делает, отвечает: "Под фонарем светлее". Это, конечно, верно. Но, к сожалению, весьма малы шансы найти потерянные ключи под фонарем. Так и с "оцифровкой" нечисловых данных. Она дает возможность имитации научной деятельности, но не возможность найти истину.

Проверка согласованности мнений экспертов и классификация экспертных мнений. Ясно, что мнения разных экспертов различаются. Важно понять, насколько велико это различие. Если мало - усреднение мнений экспертов позволит выделить то общее, что есть у всех экспертов, отбросив случайные отклонения в ту или иную сторону. Если велико - усреднение является чисто формальной процедурой. Так, если представить себе, что ответы экспертов равномерно покрывают поверхность бублика, то формальное усреднение укажет на центр дырки от бублика, а такого мнения не придерживается ни один эксперт. Из сказанного ясна важность проблемы проверки согласованности мнений экспертов.

Разработан ряд методов такой проверки. Статистические методы проверки согласованности зависят от математической природы ответов экспертов. Соответствующие статистические теории весьма трудны, если эти ответы - ранжировки или разбиения, и достаточно просты, если ответы - результаты независимых парных сравнений. Отсюда вытекает рекомендация по организации экспертного опроса: не старайтесь сразу получить от эксперта ранжировку или разбиение, ему трудно это сделать, да и имеющиеся математические методы не позволяют далеко продвинуться в анализе подобных данных. Например, рекомендуют проверять согласованность ранжировок с помощью коэффициента ранговой конкордации Кендалла-Смита. Но давайте вспомним, какая статистическая модель при этом используется. Проверяется нулевая гипотеза, согласно которой ранжировки независимы и равномерно распределены на множестве всех ранжировок. Если эта гипотеза принимается, то конечно, ни о какой согласованности мнений экспертов говорить нельзя. А если отклоняется? Тоже нельзя. Например, может быть два (или больше) центра, около которых группируются ответы экспертов. Нулевая гипотеза отклоняется. Но разве можно говорить о согласованности?

Эксперту гораздо легче на каждом шагу сравнивать только два объекта. Пусть он занимается парными сравнениями. Непараметрическая теория парных сравнений (теория люсианов) позволяет решать более сложные задачи, чем статистика ранжировок или разбиений. В частности, вместо гипотезы равномерного распределения можно рассматривать гипотезу однородности, т.е. вместо совпадения всех распределений с одним фиксированным (равномерным) можно проверять лишь совпадение распределений мнений экспертов между собой, что естественно трактовать как согласованность их мнений. Таким образом, удается избавиться от неестественного предположения равномерности.

При отсутствии согласованности экспертов естественно разбить их на группы сходных по мнению. Это можно сделать различными методами статистики объектов нечисловой природы, относящимися к кластер-анализу, предварительно введя метрику в пространство мнений экспертов. Идея американского математика Джона Кемени об аксиоматическом введении метрик (см. ниже) нашла многочисленных продолжателей. Однако методы кластер-анализа обычно являются эвристическими. В частности, невозможно с позиций статистической теории обосновать "законность" объединения двух кластеров в один. Имеется важное исключение - для независимых парных сравнений (люсианов) разработаны методы, позволяющие проверять возможность объединения кластеров как статистическую гипотезу . Это - еще один аргумент за то, чтобы рассматривать теорию люсианов как ядро математических методов экспертных оценок .

Нахождение итогового мнения комиссии экспертов. Пусть мнения комиссии экспертов или какой-то ее части признаны согласованными. Каково же итоговое (среднее, общее) мнение комиссии? Согласно идее Джона Кемени следует найти среднее мнение как решение оптимизационной задачи . А именно, надо минимизировать суммарное расстояние от кандидата в средние до мнений экспертов. Найденное таким способом среднее мнение называют "медианой Кемени".

Математическая сложность состоит в том, что мнения экспертов лежат в некотором пространстве объектов нечисловой природы. Общая теория подобного усреднения построена в ряде работ, в частности, показано, что в силу обобщения закона больших чисел среднее мнение при увеличении числа экспертов (чьи мнения независимы и одинаково распределены) приближается к некоторому пределу, который естественно назвать математическим ожиданием (случайного элемента, имеющего то же распределение, что и ответы экспертов).

В конкретных пространствах нечисловых мнений экспертов вычисление медианы Кемени может быть достаточно сложным делом. Кроме свойств пространства, велика роль конкретных метрик. Так, в пространстве ранжировок при использовании метрики, связанной с коэффициентом ранговой корреляции Кендалла, необходимо проводить достаточно сложные расчеты, в то время как применение показателя различия на основе коэффициента ранговой корреляции Спирмена приводит к упорядочению по средним рангам.

Бинарные отношения и расстояние Кемени. Как известно, бинарное отношение А на конечном множестве Q = {q 1 , q 2 ,..., q k } - это подмножество декартова квадрата Q 2 = {(q m , q n), m,n = 1,2,…,k} . При этом пара (q m , q n) входит в А тогда и только тогда, когда между q m и q n имеется рассматриваемое отношение.

Напомним, что каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать квадратной матрицей ||x(a,b) || из 0 и 1 порядка k x k . При этом x(a b) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x(b a) = 0, а во втором x(b a) = 1. При этом хотя бы одно из чисел x(a b) и x(b,a) равно 1.

В экспертных методах используют, в частности, такие бинарные отношения, как ранжировки (упорядочения, или разбиения на группы, между которыми имеется строгий порядок), отношения эквивалентности, толерантности (отношения сходства). Как следует из сказанного выше, каждое бинарное отношение А можно описать матрицей || a(i,j) || из 0 и 1, причем a(i,j) = 1 тогда и только тогда, когда qi и qj находятся в отношении А , и a(i,j) = 0 в противном случае.

Определение. Расстоянием Кемени между бинарными отношениями А и В, описываемыми матрицами ||a(i,j) || и ||b(i,j) || соответственно, называется число

D (A, B) = ∑ │a(i,j) - b(i,j) │,

где суммирование производится по всем i,j от 1 до k , т.е. расстояние Кемени между бинарными отношениями равно сумме модулей разностей элементов, стоящих на одних и тех же местах в соответствующих им матрицах.

Легко видеть, что расстояние Кемени - это число несовпадающих элементов в матрицах ||a(i,j) || и ||b(i,j) ||.

Расстояние Кемени основано на некоторой системе аксиом. Эта система аксиом и вывод из нее формулы для расстояния Кемени между упорядочениями содержится в книге , которая сыграла большую роль в развитии в нашей стране такого научного направления, как анализ нечисловой информации . В дальнейшем под влиянием Кемени были предложены различные системы аксиом для получения расстояний в тех или иных нужных для социально-экономических исследований пространствах, например, в пространствах множеств .

Медиана Кемени и законы больших чисел. С помощью расстояния Кемени находят итоговое мнение комиссии экспертов. Пусть А 1 , А 2 , А 3 ,…, А р - ответы р экспертов, представленные в виде бинарных отношений. Для их усреднения используют т.н. медиану Кемени

Arg min ∑ D (A i ,A) ,

где Arg min - то или те значения А , при которых достигает минимума указанная сумма расстояний Кемени от ответов экспертов до текущей переменной А , по которой и проводится минимизация. Таким образом,

D (A i ,A) = D (A 1 ,A) + D (A 2 ,A) + D (A 3 ,A) +…+ D (A р,A) .

Кроме медианы Кемени, используют среднее по Кемени, в котором вместо D (A i ,A) стоит D 2 (A i ,A) .

Медиана Кемени - частный случай определения эмпирического среднего в пространствах нечисловой природы . Для нее справедлив закон больших чисел, т.е. эмпирическое среднее приближается при росте числа составляющих (т.е. р - числа слагаемых в сумме), к теоретическому среднему:

Arg min ∑ D (A i ,A) → Arg min М D (A 1 , A) .

Здесь М - символ математического ожидания. Предполагается, что ответы р экспертов А 1 , А 2 , А 3 ,…, А р есть основания рассматривать как независимые одинаково распределенные случайные элементы (т.е. как случайную выборку) в соответствующем пространстве произвольной природы, например, в пространстве упорядочений или отношений эквивалентности. Систематически эмпирические и теоретические средние и соответствующие различные варианты законов больших чисел изучены в ряде работ (см., например, ).

Законы больших чисел показывают, во-первых, что медиана Кемени обладает устойчивостью по отношению к незначительному изменению состава экспертной комиссии; во-вторых, при увеличении числа экспертов она приближается к некоторому пределу. Его естественно рассматривать как истинное мнение экспертов, от которого каждый из них несколько отклонялся по случайным причинам.

Рассматриваемый здесь закон больших чисел является обобщением известного в статистике "классического" закона больших чисел. Он основан на иной математической базе - теории оптимизации, в то время как "классический" закон больших чисел использует суммирование. Упорядочения и другие бинарные отношения нельзя складывать, поэтому приходится применять иную математику.

Вычисление медианы Кемени - задача целочисленного программирования. В частности, для ее нахождения используется различные алгоритмы дискретной математики, в частности, основанные на методе ветвей и границ. Применяют также алгоритмы, основанные на идее случайного поиска, поскольку для каждого бинарного отношения нетрудно найти множество его соседей.

Рассмотрим пример вычисления медианы Кемени. Пусть дана квадратная матрица (порядка 9) попарных расстояний для множества бинарных отношений из 9 элементов А 1 , А 2 , А 3 ,..., А 9 (см. табл.3). Найти в этом множестве медиану для множества из 5 элементов {А 2 , А 4 , А 5 , А 8 , А 9 }.

Таблица 3.

Матрица попарных расстояний

В соответствии с определением медианы Кемени следует ввести в рассмотрение функцию

С (А ) = ∑ D(A i ,A) = D(A 2 ,A)+D(A 4 ,A)+D(A 5 ,A)+D(A 8 ,A)+D(A 9 ,A),

С (А 1 ) = D (A 2 ,A 1) + D (A 4 ,A 1) + D (A 5 ,A 1) +D (A 8 ,A 1) + D (A 9 ,A 1) =

= 2 + 1 +7 +3 +11 = 24,

С (А 2 ) = D (A 2 ,A 2) + D (A 4 ,A 2) + D (A 5 ,A 2) +D (A 8 ,A 2) + D (A 9 ,A 2) =

= 0 + 6 + 1 + 5 + 1 = 13,

С (А 3 ) = D (A 2 ,A 3) + D (A 4 ,A 3) + D (A 5 ,A 3) +D (A 8 ,A 3) + D (A 9 ,A 3) =

= 5 + 2 + 2 + 5 +7 = 21,

С (А 4 ) = D (A 2 ,A 4) + D (A 4 ,A 4) + D (A 5 ,A 4) +D (A 8 ,A 4) + D (A 9 ,A 4) =

= 6 + 0 + 5 + 8 + 8 = 27,

С (А 5 ) = D (A 2 ,A 5) + D (A 4 ,A 5) + D (A 5 ,A 5) +D (A 8 ,A 5) + D (A 9 ,A 5) =

= 1 + 5 + 0 +3 + 7 = 16,

С (А 6 ) = D (A 2 ,A 6) + D (A 4 ,A 6) + D (A 5 ,A 6) +D (A 8 ,A 6) + D (A 9 ,A 6) =

= 3 + 4 + 10 + 1 + 5 = 23,

С (А 7 ) = D (A 2 ,A 7) + D (A 4 ,A 7) + D (A 5 ,A 7) +D (A 8 ,A 7) + D (A 9 ,A 7) =

= 2 + 3 +1 + 6 + 3 = 15,

С (А 8 ) = D (A 2 ,A 8) + D (A 4 ,A 8) + D (A 5 ,A 8) +D (A 8 ,A 8) + D (A 9 ,A 8) =

= 5 + 8 + 3 + 0 +9 = 25,

С (А 9 ) = D (A 2 ,A 9) + D (A 4 ,A 9) + D (A 5 ,A 9) +D (A 8 ,A 9) + D (A 9 ,A 9) =

= 1 + 8 + 7 + 9 + 0 = 25.

Из всех вычисленных сумм наименьшая равна 13, и достигается она при А=А 2 , следовательно, медиана Кемени - это множество {А 2 }, состоящее из одного элемента А 2 .

Предыдущая

В практической деятельности специалистов по БИ важную роль играет имеющаяся математическая база. Именно благодаря различным методам количественного анализа, построения экономико-математических моделей, анализа и синтеза на основе системного подхода возможно грамотное управление как отдельными сферами профессиональной деятельности, так и целыми предприятиями, отраслями и даже странами. Особое значение при этом имеют оптимизация и принятие решений, на что и направлены многие существующие методы и инструменты.

Математические методы всегда играли ведущую роль в решении различных прикладных задач бизнеса. Именно благодаря им изучались общие закономерности процессов управления и передачи информации. Это осуществлялось на основе изучения множества теорий, принципов и концепций: теории автоматов, теорий принятия решений и оптимального управления, теории алгоритмов, теории обучающихся систем и многих других. С развитием ИТ математическая база не только стала использоваться для дальнейшей автоматизации моделей и организации вычислений, но и обеспечила возможности для развития технологий в новом направлении.

Например, теория автоматов позволяет представлять вычислительные машины в виде математических моделей и, таким образом, лежит в основе различных цифровых технологий и ПО, применяясь при разработке языков программирования, компиляторов и пр.

В тесной взаимосвязи с теорией автоматов находится теория алгоритмов, так как преобразуемая автоматами информация для каждого момента времени позволяет задавать шаги алгоритма. Современная теория алгоритмов также занимается проблемами формулировки различных задач в терминах формальных языков, вычисляет трудоемкость задач и потребность алгоритма в ресурсах, осуществляет поиск критериев качества алгоритмов.

Среди теорий математики и кибернетики крайне важной является теория принятия решений. Данная область исследований изучает закономерности выбора того или иного альтернативного варианта решения, а также занимается поиском наиболее выгодного из них. В числе некоторых из актуальных вопросов в современной теории принятия решений - теория коллективного выбора, например, в части анализа поведения банков или анализа распределения влияния участников какой-либо организации.

Наиболее близкой к теории принятия решений является теория оптимального управления. Ее отличает работа с иерархическими многоуровневыми системами (например, различного масштаба компаниями), для управления которыми требуются специальные методы анализа, позволяющие сформировать многоцелевые и многофакторные системы управления. Системы переводятся в новое состояние по конкретному критерию оптимальности (отсюда название теории), которым может быть минимизация трудозатрат, денежных и прочих ресурсов и пр. В случае если исходных данных для решения задачи недостаточно, а традиционные количественные методы неприменимы, используются также различные алгоритмы на основе теории нечетких множеств и теории принятия решений в условиях неопределенности. Их крайняя реализация - класс эвристических методов, представляющих собой неформализованные методы, основанные на аналогиях, прошлом опыте, экспертных оценках и прочей информации.

Соответственно для понимания и применения всех этих теорий необходим аппарат математического анализа, линейной алгебры, нелинейного программирования, теории вероятностей, комбинаторики, математической статистики, эконометрики и многие другие теоретико-прикладные дисциплины.

Существует множество областей деятельности, в которых широко используются комбинации вышеописанных дисциплин. Одной из наиболее масштабных областей является исследование операций, к которому относятся теория игр и сетевые методы планирования, теория массового обслуживания, теория расписаний, методы искусственного интеллекта и др. Системный подход в данном случае является основополагающим методологическим принципом в исследовании операций. Благодаря ему формируется единое целостное видение проблемы, для которой составляется определенная математическая модель, описывающая в математических терминах поведение системы/процесса/операции/объекта и исследуемая в дальнейшем. Возможностей построения моделей при этом существует огромное множество: линейные и нелинейные, детерминированные или стохастические, статические или динамические, дискретные или непрерывные, структурные или функциональные (так называемые модели черного ящика). Так, совместное использование теории систем массового обслуживания и математической теории расписаний представляет собой эффективный математический аппарат моделирования организации обслуживания и планирования обработки вычислительных задач в многомашинных и мультипроцессорных вычислительных системах.

Для поддержки математического моделирования с помощью компьютерных систем созданы такие известные программные решения, как Mathematica, Mathcad, MATLAB, AnyLogic.

Как уже было сказано, во многих отраслях деятельности - от биологии до строительства или экономики - важен поиск наиболее эффективных и оптимальных решений. Ярким примером являются геоинформациопные системы, которые благодаря заложенным в них моделям способны вычислить кратчайший маршрут для объезда пробок или найти ближайший кинотеатр. Среди теорий и методов, благодаря которым создание таких моделей стало возможным, - теория графов. В ее основе - представление различных объектов, событий и явлений в виде множества вершин (узлов) и ребер, соединяющих их. В случае геоинформационной системы различные дома и учреждения могут рассматриваться как вершины графов, а дороги, линии электропередач и прочие сети - как ребра графов.

Теория графов, применяемая в химии, позволяет вычислить число возможных изомеров различных органических соединений, а в коммуникационных системах - осуществлять маршрутизацию данных. Подобная же логика может быть применена и в других областях - при календарном планировании производственных процессов, расчете сетей массового обслуживания, анализе продуктовых потоков и в других целях.

Для более наглядного представления о самих методах, применяющихся для решения подобных задач, рассмотрим известную задачу коммивояжера. Ее суть - в поиске оптимального пути (которым может быть самый быстрый, самый короткий, самый дешевый маршрут) через несколько городов с заходом в них минимум один раз и конечным возвратом в исходный город. Разумеется, первым вариантом решения задачи будет ручной перебор всех возможных маршрутов. Однако в случае, когда количество вершин графа (= городов в маршруте) будет исчисляться десятками и сотнями, эффективность подобных вычислений крайне сомнительна. Поэтому оптимальная вариация данного метода - неявный перебор, или метод ветвей и границ. Он основан на идее последовательного разбиения множества допустимых решений, элементы которого на каждом шаге анализируются на предмет содержания в них оптимального решения. В случае поиска минимума (минимальное время, минимальное расстояние и т.д.) для подмножества нижняя оценка целевой функции сравнивается с верхней оценкой функционала. Алгоритм завершает работу, когда просмотрены все элементы разбиения и найдено решение с самой минимальной верхней оценкой.

Существуют также многие другие методы поиска решения: различные виды переборов, «метод ближайшего соседа», «метод имитации отжига», «алгоритм муравьиной колонии», «метод эластичной сети», которые различаюгся степенью точности, трудоемкостью и, конечно, применяемым математическим аппаратом.

Например, известный алгоритм Дейкстры, определяющий кратчайшее расстояние от одной выделенной вершины до всех остальных вершин, использует протоколы маршрутизации SSPF и IS-IS.

Существует также другой класс задач, относящихся к функциям нескольких переменных, для которых имеются различные связи и ограничения. Их рассмотрение проводится численными методами в рамках раздела нелинейного программирования. Например, если для промышленного предприятия целевой функцией будет являться функция прибыли, то ограничениями в таком случае станут изменяющиеся по определенным принципам ресурсы, рабочая сила, постепенно снижающаяся производительность оборудования и пр. Однако данная задача актуальна и для естественных наук, бизнеса, экономики, вычислительной техники и других сфер.

Большинство из вышеупомянутых задач невозможно рассматривать вне привязки еще к одному важнейшему разделу математики и статистики - теории вероятностей. Она изучает случайные явления, события и величины, их свойства и закономерности и строит функции распределения возможных значений величин. Примером использования теории может быть простейший расчет планового числа бракованных изделий на производстве исходя из вероятности их появления при различных условиях и размеров партии изделий.

Теория случайных процессов (броуновское движение, случайные блуждания, полеты Леви) эффективно используется для моделирования колебаний на фондовых рынках.

Такие сферы, как создание биржевых торговых роботов или оценка кредитных рисков, моделирование химических процессов, разработка систем компьютерного зрения или даже таргетинг рекламы, используют именно методы теории вероятностей. Разумеется, в зависимости от имеющихся данных и применяемых инструментов для каждой задачи будут также меняться трудоемкость решения и степень погрешности результата.

Другим примером для теории вероятностей, уже напрямую связанным с областью комбинаторики, являются криптоанализ и шифрование данных, например, взлом паролей через сравнение с наиболее стандартным списком кодов и затем определение вероятности размещения определенных элементов кода в конкретной последовательности через семантический анализ или анализ расположения различных клавиш на устройстве ввода. Комбинаторика является важной составляющей математического аппарата БИ. Она изучает различные дискретные объекты и их множества (сочетания, перестановки, размещения и перечисления) и тесно связана с теорией графов, которую некоторые исследователи даже причисляют к одной из областей комбинаторики. Очень многие сферы деятельности покрываются комбинаторными методами - от образования (составление расписания занятий) до военного дела (расположение подразделений), от экономики (анализ вариантов операций с акциями) до азартных игр (и расчета частоты выигрышей).

Наконец, следует сказать еще о такой науке, как математическая статистика, которая в значительной степени опирается на теорию вероятностей. Именно статистика предоставляет методы регистрации, описания и анализа различных экспериментов и наблюдений для дальнейшего построения моделей процессов и явлений. При этом некоторые методы математической статистики направлены исключительно на описание данных, их визуализацию и интерпретацию, другие - на оценку и проверку гипотез. Например, на это направлен факторный анализ, который позволяет изучать взаимосвязи между значениями переменных и выявлять скрытые переменные факторы, создающие корреляции между переменными.

Благодаря кластерному, дискриминантному, корреляционному анализу и другим методам, пришедшим из математической статистики, возможности современных ИС (от пакетов SAS, SPSS, Statistica до модулей ERP/BI и других систем) позволяют осуществлять имитационное моделирование, проводить распознавание образов, аналитическую обработку данных и решать многие другие комплексные задачи работы со сложными системами.

Одним из последних направлений в исследовании сложных динамических систем является синергетика, включающая теорию динамического хаоса, катастроф и бифуркаций, изучающая закономерности сложных неравновесных процессов на основе присущих им принципов самоорганизации. Здесь, прежде всего, следует отметить успехи синергетического подхода в моделировании нелинейной динамики агрегированных рыночных цен и финансовых странных аттракторов, взаимодействий в системе «вирус - антивирус» вычислительных комплексов.

В данном обзоре приведены не все математические методы, которые могут использоваться специалистами БИ. Автор надеется, что коллеги по БИ сделают полный обзор математических методов системного анализа в своих будущих работах.

Таким образом, среди сфер применения системного подхода :

  • совершенствование бизнес-процессов через измерение и оценку (внедрение систем менеджмента качества);
  • совершенствование системы управления организации;
  • оптимизация различных процессов через разработку математических моделей, алгоритмических и программных решений;
  • исследование операций при работе в области информационной бизнес-аналитики;
  • сценарная оптимизация динамических процессов;
  • проектирование и расчет сложных систем.
  • По материалам учебника по дисциплине «Моделирование и анализ бизнес-процессов»коллектива авторов (А. И. Громов, В. Г. Чеботарев, Я. В. Горчаков, О. И. Бойко). М.: Изд-воГУ ВШЭ, 2008).

Критерии принятия решений и их шкалы

Из схемы процесса обоснования решений, приведенной на рис. 1.5, видно, что этот процесс завершается фазой оценки альтернатив. Именно в рамках этой фазы напрямую работает принцип измерения . При этом практически неразрывно, одновременно решаются два взаимосвязанных вопроса: выработка (формирование) критерия и получение оценок критерия для каждой из сформированного ЛПР множества допустимых альтернатив.

Критерий (функция цели, показатель) - это специальная функция, заданная в номинальной , числовой или количественной шкале, областью определения которой служит множество альтернатив .

Критерий предназначен для измерения степени эффективности (вклада, полезности или ценности) каждой альтернативы в отношении достижения цели операции. Те значения, которые эта функция принимает, называют оценками критерия .

Измерение - это процесс приписывания объектам таких символов, сравнение значений которых позволяет делать выводы о связи объектов между собой. Для ТПР это означает следующее: если ЛПР удалось подобрать такой критерий для оценки альтернатив, что у одной из них оценка критерия выше, чем у других, то можно предположить, что, выбрав альтернативу с наибольшим (максимальным) значением оценки критерия, ЛПР тем самым выберет наилучшую альтернативу.

где - альтернативы; - значения оценок критерия для альтернатив; - уровни полезности для ЛПР полученных значений оценок соответственно; - символ, означающий нестрогое превосходство для альтернатив и нестрогое неравенство для оценок (чисел); Û - знак двойной импликации ("тогда и только тогда", "необходимо и достаточно").

Соотношение (1.1) следует понимать так: если какая-то альтернатива не хуже какой-то другой (в нашем случае альтернатива не менее предпочтительнее, чем альтернатива ) то значение полезности для более предпочтительной альтернативы должно быть не ниже, чем для менее предпочтительной (в нашем случае функция полезности должна иметь значение не меньше чем . При этом мы обязательно будем полагать (и это особенно важно), что и обратное тоже верно (знак двойной импликации "тогда и только тогда" в выражении на это указывает).

Именно возможность "обратного прочтения" выражения (1.1) позволяет сделать важный вывод: если найдены альтернативы, обладающие максимальной полезностью, то они, скорее всего (с точностью до построенной модели u (Х) предпочтений) будут наилучшими решениями.

Таким образом, из соотношения (1.1) немедленно следует и формальное правило выбора наилучшей альтернативы:

, (1.2)

где - наилучшая альтернатива; - множество альтернатив.

Теория измерения разработала широкий арсенал разнообразных по своим свойствам шкал для измерения значений критериев. Эти шкалы позволяют в наибольшей степени обеспечить требование высокой информативности при решении задачи выбора наилучшей альтернативы и одновременно добиться достаточной простоты и экономии средств при измерениях.

Так, если целью измерения является разделение объектов (в нашем случае это альтернативы) на классы по признакам типа "да - нет", "свой - чужой", при годный - непригодный" и т. п., то используют так называемые номинальные или (классификационные ) шкалы. При этом любые формы представления оценки в номинальной шкале, которые не позволят отождествить объекты из разных классов между собой, будут одинаково подходящими. Так, часто при моделировании предпочтений в качестве градаций номинальных шкал используют шкалу целых чисел и даже бинарную шкалу со значениями (1; 0). Например, ЛПР может допустить считать все, что "да", - это единица, а все, что "нет", - это нуль.

Над значениями оценок в номинальных шкалах можно производить любые взаимно-однозначные преобразования и при этом смысл высказываний, задаваемых выражением (1.1), сохраняется.

Если целью измерения является упорядочение объектов одного класса в соответствии с интенсивностью проявления у них какого-то одного общего свойства, то наиболее выразительной и экономной будет ранговая , или порядковая шкала. Например, если общим для стратегий осуществления экспансии на рынке будет признак "объем продаж", то имеющиеся у ЛПР альтернативы осуществления экспансии можно, например, регламентировать в порядковой шкале со значениями "высокий", "средний", "низкий". Здесь также можно присвоить градациям шкалы числовые значения - ранги. Шкала в таком случае называется ранговой . Например, если первому в упорядоченном ряду объекту присвоить ранг, равный 1, второму - равный 2, и т. д., то получим так называемую прямую ранговую шкалу . Возможно ранжирование и в обратных ранговых шкалах , где более предпочтительному объекту присваивается больший, а не меньший ранг. Оценки в ранговых шкалах допускают любые монотонно возрастающие или монотонно убывающие преобразования.

Номинальные и ранговые шкалы относят к классу так называемых качественных шкал , то есть шкал, позволяющих выносить не более чем вербальные (на неформальном, качественном уровне) оценки и суждения.

Однако в практике чрезвычайно часто встречаются случаи, когда простого, качественного суждения об упорядочении альтернатив недостаточно. Например, ЛПР для принятия решений нужно не просто узнать, что одна из альтернатив осуществления экспансии на рынке обеспечивает объем продаж выше, чем другая. Ему еще нужно получить представление о том, насколько или во сколько раз достигаемый для альтернатив уровень продаж выше (или ниже). В подобных ситуациях для измерения значений критериев применяют наиболее совершенный класс шкал - количественные шкалы .

Подклассами количественных шкал выступают интервальная шкала , шкала отношений и абсолютная шкала - самая совершенная из всех шкал. Абсолютная шкала допускает только тождественные преобразования над ее значениями. Промежуточное положение (в смысле совершенства) между качественными и количественными шкалами занимает числовая , балльная шкала. В этой шкале оценки критериев выражаются в виде чисел, баллов, начисляемых по уcтановленным ЛПР правилам.

Что касается свойств балльных шкал, то чем меньше у них градаций (например, 3-5 числовых градаций) и чем проще правила начисления баллов, тем ближе такие шкалы к качественным, ранговым. И наоборот, чем число градаций больше и чем сложнее правила начисления баллов, тем балльная шкала ближе по своим свойствам и возможностям к количественной, интервальной.

Итак, чтобы воспользоваться формальной моделью (1.2) для выбора наилучшей альтернативы, следует решить задачу измерения .

В самом начале ЛПР проводит углубленный анализ цели, проникается пониманием полезности достигаемых результатов для решения проблемы. Именно здесь, на этом шаге ЛПР работает по технологии "номинаций" в простейшей, качественной шкале. Используя вербальное описание цели операции, ЛПР тщательно моделирует цель, формально воспроизводя ее в общем случае в виде вектора требуемого результата. Затем, действуя по принципу "вот эти частные критерии отнести к оценкам затрат, а те - к оценкам эффекта, формирует в общем случае векторный критерий W. Далее проводится содержательный анализ состава и генезиса (происхождения) факторов, задающих тип механизма ситуации.

Исходя из представления о цели и механизме ситуации, ЛПР формирует концептуальное множество альтернатив , принципиально приводящих к достижению цели операции. После этого концептуальное множество альтернатив ЛПР содержательно анализируется с целью выделения из него физически реализуемых альтернатив . Это значит, что каждую из альтернатив концептуального множества ЛПР проверяет на ее приемлемость как в отношении достижения цели операции, так и в отношении удовлетворения ограничений по времени на подготовку и реализацию этой альтернативы в ходе операции и требуемых ресурсов, необходимых для физической реализации альтернативы.

Когда концептуальные оценки затрат и эффекта (то есть оценки в номинальной шкале) получены, можно уже формально отсеять менее предпочтительные из концептуальных альтернатив. Менее предпочтительными при этом следует считать те из физически реализуемых концептуальных альтернатив, которые одновременно уступают хотя бы одной из других одновременно по оценкам эффекта и затрат.

В процессе подобного "номинирования" получают физически реализуемое допустимое множество альтернатив , состоящее из "нехудших" компонентов.

Далее для каждой альтернативы из множества физически реализуемых альтернатив следует произвести измерение значений всех частных компонентов векторного критерия в более совершенной шкале - ранговой или балльной, получить оценки и сделать выводы о "тенденциях", проявляющихся в изменении значений оценок критериев при изменениях значений управляемых факторов, имеющихся в описании альтернатив.

Изученные на основе измерения тенденции будут служить главными ориентирами при проверке адекватности более тонких моделей, позволят на количественном уровне произвести сравнения оценок альтернатив.

На третьем шаге процесса измерения строят модели для измерения оценок критериев в более совершенных, количественных шкалах типа интервальных или шкал отношений. Таким образом, более точно устанавливают не только тенденции, но и пропорции в значениях оценок. На этом же шаге измерения формируют функцию полезности для ЛПР оценок критериев, также, как правило, в шкале интервалов.

Схема процесса принятия решений

Главное предназначение ЛПР и конечный продукт его управленческой деятельности - это выработка решений. Разумеется, немаловажны и другие его управленческие функции, такие, как организация взаимодействия, всестороннего обеспечения проведения операции, контроль, оказание помощи, оценка фактической эффективности операции, фиксация, обобщение и распространение накопленного в ходе операции опыта.

Схема структуры принятия управленческих решений представлена на Рис. 1.7.

Рис. 1.7. Схема процесса принятия решения.

Основу принятия всех решений на всех этапах процесса выработки решений, конечно же, составляют предпочтения ЛПР.

Несомненно, целесообразным началом процесса принятия решений должна стать формализация предпочтений .

После того как предпочтения ЛПР формализованы и получена необходимая информация о предпочтениях, переходят к следующему важному шагу принятия решений - к построению функции выбора.

Функция выбора в теории принятия решений имеет фундаментальное значение. Именно на ее построение в конечном итоге ориентированы решение задач формирования исходного множества альтернатив, анализ условий проведения операции, выявление и измерение предпочтений ЛПР.

Согласно формальному определению, принятому в ТПР, функция выбора - это отображение вида

, (1.3)

где - некоторое множество(исходное для рассматриваемого шага принятия решений), изкоторого производят выбор; - подмножество, обладающее определенными (известными или заданными) свойствами, причем .

При поэтапном получении от ЛПР информации о его предпочтениях в ходе проведения измерений вначале строится функция выбора по результатам измерения и оценки в наиболее надежной, но и менее точной номинальной шкале на основе качественных суждений о предпочтениях. В результате из исходного множества А альтернатив получают первое представление искомого подмножества альтернатив , в котором содержится наилучшая альтернатива .

Если ЛПР, проведя неформальный анализ подмножества , еще не смогло определиться в выборе , то следует продолжить построение функции выбора. Для этого ЛПР должно уточнить измеренные предпочтения, применив для их измерения более совершенную, например порядковую или балльную , шкалу.

В результате уточнения вида функции выбора будет получено в общем случае иное подмножество альтернатив, причем . Теперь ЛПР должно сосредоточиться на анализе этого последнего множества , так как опять-таки наилучшая альтернатива содержится именно в нем. Затем при необходимости можно вновь уточнить предпочтения ЛПР, измерив их в какой-либо из пропорциональных шкал, и так далее до тех пор, пока ЛПР уверенно не остановится в выборе наилучшей альтернативы .

Следует иметь в виду, что конкретный вид функции выбора, реализующий отображение (1.3), зависит от того, каков механизм ситуации.

Это обстоятельство отмечено на схеме Рис. 1.7. вариантами построения функции выбора с детализацией их по типу условий неопределенности: в условиях стохастической неопределенности , в условиях поведенческой неопределенности и в условиях природной неопределенности .

Целевое различие в использовании скалярного и векторного критериев определило необходимость отображения на Рис. 1.7 в общем случае двух вариантов формы исходных данных и процедур для построения функции выбора - по скалярному или векторному критерию.

Получение информации

Процесс принятия решения требует по возможности полного объема информации как о самой управляющей системе, так и о среде ее функционирования (окружающей среде). Без информации такого рода невозможны анализ условий принятия решений, выявление механизма ситуации и формирование исходного множества альтернатив . ЛПР должен быть проведен содержательный анализ информации об условиях осуществления операции, получены надежные представления о механизме ситуации. Только обретя эту информацию, ЛПР сможет с позиций системного подхода не только вербально описать основные (ведущие) факторы, способствующие и мешающие формированию успешного исхода операции, но и формально оценить степень их влияния на результативность исхода.

Для этого необходимо точно понять, какая информация, какого качества и к какому сроку нужна. Результат этого промежуточного решения (содержание, требуемые точность и надежность информации, оперативность ее получения) поможет ЛПР осознанно выбрать один из доступных источников информации и принять решение. Схема классификации возможных источников и способов получения информации приведена на Рис. 1.8.

Рис. 1.8. Концептуальная схема классификации возможных источников и способов получения информации.

Из анализа схемы на Рис. 1.8. следует, что принципиально существует лишь три источника информации:

· эмпирические данные;

· знания, личный опыт и интуиция ЛПР;

· совет специалиста (экспертиза).

Ясно, что практически чаще всего люди черпают информацию из собственного опыта и знаний, а собственная интуиция помогает им заполнить пробелы в позитивном знании.

Кроме этого имеются еще две принципиальные возможности: поискать необходимые сведения в одном из "объективных источников", где зафиксирован исторический опыт человечества (эмпирические данные), или обратиться к "субъективному источнику" - к знаниям, умениям и навыкам признанных специалистов своего дела (экспертам).

В ТПР считают, что эксперт - это человек, который лично работает в рассматриваемой области деятельности, является признанным специалистом по решаемой проблеме, может и имеет возможность высказать суждение по ней в доступной для ЛПР форме.

Эксперты выполняют информационную и аналитическую работу на основе своих личных представлений о решаемой задаче. В общем случае представления экспертов могут не совпадать с мнением ЛПР. Такое расхождение во мнениях играет как отрицательную, так и положительную роль. С одной стороны, при несовпадении мнений затягивается процесс выработки решения, но, с другой - ЛПР может критически осмыслить альтернативную точку зрения или скорректировать собственные предпочтения.

Чтобы повысить личную уверенность в том, что специалист дал ему правильный совет, ЛПР может обратиться не к одному, а к нескольким экспертам. Соответственно, различают индивидуальную (один эксперт) и групповую экспертизу. Если вопрос строго конфиденциальный, время лимитировано или нет возможности спросить у нескольких специалистов ответа на интересующий вопрос, то индивидуальная экспертиза - наилучший способ получения информации. Но если перечисленные ограничения не являются существенными, то, несомненно, групповая экспертиза - в целом более достоверный и точный способ получения информации.

В то же время в ходе групповой экспертизы возможно несовпадение субъективных суждений отдельных специалистов. В связи с этим требуется предпринимать специальные приемы обработки экспертной информации с целью повышения надежности результатов.

ТПР разработан специальный комплекс организационных, технических и математических процедур, придающих стройность и логическую обусловленность всему процессу получения, обработки и анализа групповой экспертной информации. Этот комплекс процедур, включающий экспертизу (то есть сам опрос экспертов) лишь как один из этапов получения информации, в ТПР получил название метода экспертного оценивания .

Исторически накапливая знания, научившись письменности, люди стали фиксировать свой объективный опыт. Всю полезную информацию стали заносить в той или иной форме на специальные носители. Вначале эти носители были несовершенны (например, рукописи, книги) и малодоступны, однако постепенно они приобрели более совершенную форму, а с развитием печатного дела превратились в библиотеки, в банки данных (БнД), базы данных (БзД) и базы знаний (БзЗ). Процесс поиска общедоступной информации стал более удобным, эффективным и даже творческим. Но в это же время какая-то информация и какие-то источники информации становились недоступными широкой общественности. Поэтому в том случае, когда ЛПР в силу разных причин не может найти необходимую ему информацию в общедоступных источниках, ее приходится активно добывать. Чтобы добыть недоступную информацию, ЛПР может организовать и провести натурный или модельный эксперимент , может прибегнуть к помощи разведки или применить какие-то спецсредства.

Разведка или спецсредства требуют значительных затрат; то же относится и к эксперименту, особенно, если эксперимент масштабный и проводится в условиях действия неоднозначного механизма ситуации. Поэтому, чтобы сэкономить средства, целесообразно провести строго научное планирование эксперимента , количественно установить его параметры, оптимальные в отношении эффективности будущих решений и действий ЛПР.

Значительные теоретические успехи достигнуты в деле планирования экспериментов на математических моделях с применением компьютеров. Аппарат математической теории планирования в основном ориентирован на исследование случайных механизмов ситуации. В то же время он нередко бывает полезным и в других ситуациях.

Рассмотрим постановку задачи планирования эксперимента.

Если целью исследования является максимизация полезного эффекта эксперимента при ограничениях на затраты, а сам полезный эффект соотносится в сознании ЛПР с обеспечением экстремума (например, максимума) выходного результата, то задача установления оптимальных параметров эксперимента сведется к стремлению максимизировать выходной результат при ограничениях на затраты. Например, если нужно увеличить выход некоторого полезного вещества в процессе химического производства, а объем выхода зависит от таких важных параметров, как температура, давление и т.п., то постановка задачи планирования эксперимента по выпуску химического продукта может выглядеть следующим образом: найти оптимальное сочетание перечисленных управляемых переменных процесса химического производства, которые обеспечивают максимальный выход готового продукта требуемого качества, при условии, что затраты на проведение эксперимента не выше отпущенных на него финансов.

Примерно по такой же схеме формулируется постановка задачи на получение информации и в том случае, когда эффект отождествляется с точностью предсказания выходного результата, то есть с величиной ошибки воспроизведения механизма ситуации, а также постановка задачи, в которой целью ЛПР является стремление к минимизации затрат на моделирование при обеспечении уровней притязаний ЛПР на ожидаемый эффект.

Особенности применения математической теории при принятии управленческих решений

Замечание 1

Методы, которые основы на использовании средств математики, позволяют принимать управленческие решения , поддающиеся формализации или полному описанию взаимосвязи и взаимозависимости их условий, факторов и результатов.

Использование математической теории характерно для принятия тактических и частично оперативных решений.

Применение математической теории эффективно при наличии ряда параметров управленческого решения:

  • заранее четко известна цель или критерий оптимизации;
  • очевидны главные ограничения - условия достижения данной цели;
  • управленческая проблема хорошо структурирована.

Алгоритм математической теории

Особенность математической теории обоснования управленческих решений заключается в наличие в ней определенного алгоритма, который точно предписывает выполнять некую систему операций в установленной последовательности для решения определенного класса задач.

Алгоритм математической теории принятия управленческих решений должен соответствовать ряду требований:

  • определенность, т.е. точность и однозначность, не оставляющие места для произвола;
  • массовость и универсальность - применимость для решения конкретного класса задач, когда первоначальные данные варьируются в известных границах;
  • результативность, т.е. возможность решения установленной задачи за ограниченное число операции.

Математические методы принятия управленческих решений

Основными методами решения типовых управленческих задач в рамках математической теории являются:

  1. Метод математического анализа используется при расчетах для обоснования потребностей в ресурсах, учете себестоимости, разработки проектов и т. д.
  2. Метод математической статистики удобно использовать, когда изменение исследуемых показателей является случайным процессом.
  3. Эконометрический метод предполагает использование экономической модели - схематического представления экономического процесса или явления.
  4. Линейное программирование - решение системы уравнений, когда имеется строго функциональная зависимость между исследуемыми явлениями.
  5. Динамическое программирование используется для решения оптимизационных задач, где ограничения или целевая функция имеют нелинейную зависимость.
  6. Теория очередей используется для поиска оптимального количества каналов обслуживания при заданном уровне потребности в них. Примером такой ситуации является выбор оптимального варианта организации работы с клиентами, чтобы время обслуживания было минимально, а качество – высоко без дополнительных затрат.
  7. Метод исследования операций - использование математических вероятностных моделей, которые представляют исследуемый процесс, вид деятельности или систему. Оптимизация сводится к сравнительному исследованию числовых оценок тех параметров, которые нельзя оценить обычными методами.
  8. Ситуационный анализ – это комплексная технология принятия и реализации управленческого решения, которая основана на проведении анализа отдельной управленческой ситуации. Такой анализ отталкивается от конкретной ситуации, проблемы, возникающей в деятельности организации, которая требует принятия управленческого решения.
  9. Методы теории игр - моделирование ситуации, в которой при обосновании решений необходимо учитывать конфликт или несовпадение интересов различных лиц.
  10. Точки безубыточности - метод, в котором общие доходы уравниваются с суммарными расходами для поиска точки, приносящей предприятию минимальную прибыль.
  11. Проецирование тренда - анализ временных рядов, основанный на допущении, что произошедшее в прошлом дает хорошее приближение в случае оценке будущего. Этот метод используется для выявления тенденций прошлого и их продления на будущее.