Имеется n-канальная СМО с неограниченной очередью. Она характеризуется следующими показателями :

Предельные вероятности:

, , . . . , , ,…, ,… (10)

Вероятность того, что заявка окажется в очереди:

(11)

(13)

Среднее время нахождения в очереди:

(15)

Среднее время нахождения заявки в очереди:

Рассмотрим пример решения задачи многоканальной СМО с ожиданием.

Задача . В магазине к кассам поступает поток покупателей с интенсивностью 81 человек в час. Средняя продолжительность обслуживания кассиром одного покупателя tобсл = 2 мин. Определить предельные вероятности состояний и характеристики обслуживания узла расчета.

По условию λ=81(чел./час)= 81/60=1,35 (чел./мин.). По формулам (1, 2):

= λ/μ= λ * tобсл = 1,35 * 2 = 2,7

<1, т.е. при n > = 2,7. Таким образом, минимальное количество кассиров n =3.

Найдем характеристики обслуживания СМО при n=3.

Вероятность того, что в кассах отсутствуют покупатели, по формуле (9):

= (1+2,7+2,7 /2!+2,7 /3!+2,7 /3!(3-2,7)) = 0,025

В среднем 2,5 % времени кассиры будут простаивать.

Вероятность того, что в кассах будет очередь, определим по формуле (11):

P = (2,7 /3!(3-2,7))0,025 = 0,735

Среднее число покупателей, находящихся в очереди рассчитывается по формуле (13):

L = (2,7 /(3*3!(1-2,7/3) ))*0,025 = 7,35 (чел.)

T =7,35/1,35 = 5,44 (мин.)

Определим среднее число покупателей в кассах по формуле (15):

L =7,35+2,7=10,05 (чел.)

Среднее время нахождения покупателей в кассах находится по формуле (16):

T =10,05/1,35=7,44 (мин)

Среднее число кассиров, занятых обслуживанием покупателей, по формуле (12) =2,7.

Коэффициент (доля) занятых обслуживанием кассиров вычисляется по следующей формуле:

Абсолютная пропускная способность узла расчета A=1,35 (чел./мин), или 81 (чел./час), т.е. 81 покупатель в час. Анализ характеристик обслуживания свидетельствует о значительной перегрузке касс при наличии трех кассиров.

Системы массового обслуживания с ограниченной очередью

Имеется n-канальная СМО с ограниченной очередью. Число заявок в очереди ограничено числом m. Если заявка поступает в момент, когда в очереди уже m заявок, она не обслуживается. Такая СМО характеризуется следующими показателями :

Предельные вероятности:

(17)

, , . . . , , ,…, (18)

Вероятность отказа:

(19)

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число занятых каналов:

Среднее число заявок в очереди:

(23)

Среднее число заявок в системе:

Пример оптимизации СМО

Показатели работы системы массового обслуживания могут использоваться для решения оптимизационных задач.

Задача.

Определить оптимальное количество причалов в порту с минимальными затратами, если известно, что за год было обслужено 270 судов. Разгрузка одного судна длится в среднем 12 часов. Пеня за простой судна в порту составляет 100 тыс.р./сут.. Затраты на причал 150 тыс.р./сут. Расчеты приведены в таблице.

Решение.

По условию

λ=270(судов/год)=270/360=0,75(судов/сут.),

tобсл=12ч=12/24=0,5 сут.

По формулам (1, 2):

= λ/μ= λ * tобсл = 0,75 * 0,5 = 1,5

Очередь не будет возрастать до бесконечности при условии /n <1, т.е. при n > = 1,5. Таким образом, минимальное количество причалов n =2.

Найдем характеристики обслуживания СМО порта при количестве причалов n=2.

Вероятность того, что в порту отсутствуют суда, вычислим по формуле (9):

В среднем 1,4 % времени причалы будут простаивать.

Среднее число судов, находящихся в очереди рассчитывается по формуле (13):

Среднее время ожидания в очереди вычисляется по формуле (14):

T =1,93/0,75 = 2,57 (сут.)

Определим среднее число судов в порту по формуле (15):

L =1,93+1,5=3,43 (судна)

Среднее время нахождения судов в порту находится по формуле (16):

T =3,43 /0,75 =4,57 (сут)

Среднее число занятых причалов (12) =1,5.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке порта при наличии двух причалов.

Найдем суммарную пеню за простой судов в порту в сутки. Для этого перемножим пеню за простой судна в порту и среднее число судов в очереди:

= * L .

Определим затраты по обслуживанию причалов в сутки: = *n.

Для двух причалов в сутки

Суммарные затраты составят: С= + =193+300=493(ден.ед.)

Суммарные затраты по условию задачи должны быть минимальны.

Рассчитаем суммарные затраты для количества причалов n = 2, 3, 4. Расчеты приведены в таблице. Как видно из таблицы, минимальные затраты достигаются при n = 3. Следовательно, для минимизации затрат необходимо 3 причала.

Таблица 1.- Расчет оптимального числа причалов

Показатель Количество причалов
Интенсивность потока судов 0,75 0,75 0,75
Интенсивность обслуживания судов 0,5 0,5 0,5
Интенсивность нагрузки причала 1,5 1,5 1,5
Вероятность, что все причалы свободны 0,14 0,21 0,22
Среднее число судов в очереди 1,93 0,24 0,04
Среднее время пребывания судна в очереди, сут. 2,57 0,32 0,06
Среднее число судов в порту 3,43 1,74 1,54
Среднее время пребывания судна в порту, сут 4,57 2,32 2,06
Пеня за простой судна в порту, ден.ед./сут. () 100,00 100,00 100,00
Затраты по обслуживанию причала в сутки, ден.ед./сут. () 150,00 150,00 150,00
Суммарная пеня за простой судов в порту в сутки, ден.ед. () 192,86 23,68 4,48
Суммарные затраты по обслуживанию причалов в сутки, ден.ед. () 300,00 450,00 600,00
Суммарные затраты, ден.ед.(С) 492,86 473,68 604,48

Варианты заданий

Таблица 2 - Варианты заданий

Номер варианта
Задача
Номер варианта
Задача

1. В парикмахерской в зависимости от сложности стрижки, мастер выполняет работу в среднем за 30 мин. Посетители приходят в среднем через 25 мин. За каждый час работы мастер зарабатывает 300 ден.ед.. Очередь ограничена до 4 человек. Если в очереди больше 4 человек, клиент уходит, и потери за час составляют 150 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество мастеров.

2. Автомобили подъезжают на АЗС со средней частотой 2 автомобиля за 5 минут. Заправка автомобиля в среднем длится 3 минуты. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество колонок, чтобы средняя длина очереди не превышала 3 авт.

3. Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин. На осмотр и выявление дефектов каждой машины затрачивается в среднем 30 минут. На осмотр поступает в среднем 36 машин в сутки. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра не обслуженной. Определить вероятности состояний и характеристики обслуживания профилактического пункта осмотра. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,8.

4. В срочной мастерской по починке обуви в зависимости от сложности ремонта мастеру требуется в среднем 15 мин. Посетители приходят в среднем через каждые 14 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество мастеров, чтобы средняя длина очереди не превышала 5 заказов.

5. В справочной оператор дает справку в среднем за 4 мин. Звонки поступают каждые 3мин. Если операторы заняты, то звонок не обслуживается. Определить вероятности состояний и характеристики обслуживания справочной. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,75.

6. В зависимости от количества продуктов у покупателя кассиру в магазине требуется в среднем на один чек 2 мин. Покупатели подходят к кассе с интенсивностью 81 человек/час. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество кассиров, чтобы средняя длина очереди не превышала 4 покупателей.

7. Диспетчеру в АТП в зависимости от типа автомобиля требуется в среднем на выдачу одного маршрутного листа 20 минут. Заявки на автомобили поступают в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество диспетчеров, чтобы средняя длина очереди не превышала 2 заявок.

8. Требуется оценить работу АТС. Если все линий связи заняты, то абонент выбывает из системы. Звонки поступают с интенсивностью 2 вызов/мин.. Продолжительность разговоров распределена экспоненциально, и в среднем равна 1,5 мин. Определить предельные вероятности и показатели эффективности системы. Определить количество операторов, чтобы относительная пропускная способность АТС была не меньше 0,9.

9. В банке в зависимости от сложности запроса клиента кассиру требуется в среднем 10 минут. Клиенты подходят к нему в среднем через каждые 12 минут. Кассир зарабатывает 15000 ден.ед. за месяц. Очередь ограничена до 6 человек. Если в очереди больше 6 человек, клиент уходит, и потери за час составляют 200 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество кассиров.

10. В среднем на одну транзакцию у банкомата уходит 2 минуты. Клиенты подходят к нему в среднем через каждые 20 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество банкоматов, чтобы средняя длина очереди не превышала 2 человек.

11. В магазине продавцу в зависимости от покупателя требуется в среднем на одну покупку 10 мин. Покупатели подходят к нему в среднем через каждые 5 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество продавцов, чтобы средняя длина очереди не превышала 5 человек.

12. В отделе заказов мебельной фабрики менеджеру по продажам в зависимости от заказа клиента требуется в среднем на оформление одного заказа 25 минут. Клиенты приходят в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество менеджеров, чтобы средняя длина очереди не превышала 3 человек.

Порядок выполнения работы

1.Рассчитайте в системе Excel показатели системы массового обслуживания по формулам, приведенным в методичке. Количество каналов обслуживания n=1, 2, 3...k перебирается для нахождения оптимального значения по варианту. Предполагается, что входные потоки и обслуживание соответствуют пуассоновскому распределению.

2.Проведите анализ полученных результатов.

3.Составьте отчет.

1) Цель работы;

2) постановка задачи;

3) результаты расчетов, проведенных в Excel;

4) выводы по выполнению работы.

Контрольные вопросы

1. Что включает в себя понятие система массового обслуживания?

2. Какие существуют виды систем массового обслуживания?

3. Что относится к основным характеристикам и показателям эффективности систем массового обслуживания?

4. Укажите основные свойства (характеристики) входящего потока требований?

5. Перечислите основные особенности и характеристики систем массового обслуживания с ожиданием?

6. Каковы основные характеристики СМО с отказами?

7. Приведите примеры различных видов СМО?

Библиографический список

1. Афанасьев М.Ю. Исследование операций в экономике: модели, задачи, решения. / М.Ю. Афанасьев, Б.П. Суворов.- М.:ИНФРА, 2003.-444с.

2. Вентцель Е.С. Исследование операций. Задачи, приниципы, методология./ Е.С. Вентцель.-М.: Высшая школа, 2001.-208с.

3. Зайченко Ю.П. Исследование операций./ Ю.П. Зайченко.- К.: Вища школа, 1975.-320с.

4. Конюховский П.В. Математические методы исследования операций. / П.В. Конюховский.- СПб.: Питер, 2001.-192с.

5. Кремер Н.Ш., Путко Б.А. Исследование операций в экономике./ Н.Ш. Кремер, Б.А. Бутко, И.М. Тришин.- М.:Банки и биржи, ЮНИТИ, 1997.-407с.

1. Кудрявцев Е.М. GPSS World.Основы имитационного моделирования различных систем.- М.: ДМК Пресс, 2004.- 320 с.

2. Советов В.Я., Яковлев С.А. Моделирование систем. - М.: Высшая школа, 1985

3. Советов В.Я., Яковлев С.А. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1989

В коммерческой деятельности в качестве одноканалыюй СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, полиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу). Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью X и интенсивностью обслуживания р. Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания. Размеченный граф состояний такой системы приведен на рис. 5.17.

Рис. 5.17

Количество возможных состояний ее бесконечно:

So - канал свободен, очереди нет, k = 0;

S - канал занят обслуживанием, очереди нет, k = 1; S 2 - канал занят, одна заявка в очереди, k = 2;

5/, - канал занят (k - 1), заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выведенных для СМО с ограниченной очередью, путем перехода к пределу при т >


Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем р. Такая последовательность представляет собой сумму бесконечного числа членов при т -*? оо. Эта сумма сходится, если прогрессия, бесконечно убывающая при р 1 очередь при t -* оо с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому Pofc = 1, следовательно, относительная пропускная способность Q = р 0 б с = 1, соответственно р ОТК = О, а абсолютная пропускная способность А = XQ = X, L 0 ^ = р.

Вероятность пребывания в очереди k заявок равна

Среднее число заявок в очереди

Среднее число заявок в системе

Среднее время ожидания обслуживания в очереди

Среднее время пребывания заявки в системе

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, % > р, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при X р, р

Пример 5.18. Булочная «Горячий хлеб» имеет одного контроле- ра-кассира. В течение часа приходят в среднем 54 покупателя. Средняя стоимость одной покупки составляет 7 руб. Среднее время обслуживания контролером-кассиром одного покупателя составляет 1 мин. Определим выручку от продажи, характеристики СМО и проведем анализ ее работы.

Решение

По условиям задачи п = 1; X = 54 ед/ч; р = 60 ед/ч, и поскольку р = Х/р = 0,9, то очередь нс будет расти бесконечно, следовательно, предельные вероятности существуют:

Вероятность того, что контролер-кассир свободен,

Вероятность того, что контролер-кассир занят работой,

Среднее число покупателей в очереди

Среднее время пребывания покупателя в булочной

Среднее число покупателей в булочной

Вероятность того, что в булочной находятся 1, 2, 3,4 человека, а следовательно, ожидают расчета в очереди у контролера-кассира 1, 2, 3 человека соответственно

Вероятность того, что ожидают расчета у контролера-кассира не более трех человек, равна

Доля времени простоя контролера-кассира составляет всего 10% от продолжительности рабочего дня, однако время ожидания обслуживания в очереди ощутимо - 9 мин, поэтому следует уменьшать время обслуживания t of -)C , введя дополнительный кассовый аппарат и соответственно контролера-кассира, иначе покупатели будут уходить в другое торговое предприятие, что приведет к ухудшению экономических показателей хозяйственной деятельности, в частности к уменьшению выручки от продажи хлеба и образованию остатков хлеба па следующий день и к потере его качества.

Пример 5.19. Интенсивность потока автомобилей на АЗС к колонке за бензином АИ-92 составляет 30 автомобилей в час, а среднее время заправки равно 5 мин. Проведем анализ работы системы массового обслуживания АЗС.

Решение

X = 30 ед/ч; = 5 мин = 1/12 ч.

Определим характеристики СМО. Интенсивность нагрузки:

Поскольку р > 1, то АЭС не будет работать в стационарном режиме и очередь будет постоянно увеличиваться, поэтому необходимо ввести еще одну колонку с бензином АИ-92 или уменьшить время обслуживания до величины ~ 1,9 мин, тогда

следовательно, р

Пример 5.20. В парикмахерской работает только один мужской мастер. Среднее время стрижки одного клиента составляет 20 мин. Клиенты в среднем приходят каждые 25 мин. Средняя стоимость стрижки составляет 60 руб. Как в первую смену с 9 до 15 ч, так и во вторую - с 15 до 21 ч работает один мастер. Провести анализ работы системы обслуживания.

Решение

п = 1; X = 2,4 клиента/ч; t Q fc = 20 мин = 1/3 ч.

Интенсивность нагрузки

Долю времени простоя мастера

Вероятность того, что мастер занят работой,

Среднее число клиентов в очереди

Среднее время ожидания в очереди

Среднее время пребывания клиентов в парикмахерской

Система работает вполне удовлетворительно. Поскольку р X = 4 клиента/ч, то интенсивность нагрузки составит р > 1 и очередь будет постоянно увеличиваться, что приведет к неустойчивому режиму работы СМО.

Рассмотрим простейшую СМО с ожиданием - одноканальную систему , в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом , т. е. если заявка пришла в момент, когда в очереди уже стоят заявок, она покидает систему необслуженной. В дальнейшем, устремив к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, заявок стоят в очереди;

Канал занят, т заявок стоят в очереди.

ГСП показан на рис. 5.8. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево - . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево - поток «освобождений» занятого канала, меющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Рис. 5.8. Одноканальная СМО с ожиданием

Изображенная на рис. 5.8 схема представляет собой схему размножения и гибели. Используя общее решение (5.32)-(5.34), напишем выражения для предельных вероятностей состояний (см. также (5.40)):

или с использованием :

Последняя строка в (5.45) содержит геометрическую прогрессию с первым членом 1 и знаменателем р; откуда получаем:

в связи с чем предельные вероятности принимают вид:

Выражение (5.46) справедливо только при (при она дает неопределенность вида ). Сумма геометрической прогрессии со знаменателем равна , и в этом случае

Определим характеристики СМО: вероятность отказа , относительную пропускную способность , абсолютную пропускную способность , среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т мест в очереди тоже:

Относительная пропускная способность:

Абсолютная пропускная способность:

Средняя длина очереди. Найдем среднее число заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины - числа заявок, находящихся в очереди:

С вероятностью в очереди стоит одна заявка, с вероятностью - две заявки, вообще с вероятностью в очереди стоят заявок, и т. д., откуда:

Поскольку , сумму в (5.50) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (5.50) и используя из (5.47), окончательно получаем:

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где - среднее число заявок, находящихся под обслуживанием, а известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться (с вероятностью ) или 1 (с вероятностью ), откуда:

и среднее число заявок, связанных с СМО, равно

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т. д.

Если же , т. е. когда вновь приходящая заявка застает канал обслуживания занятым и заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (5.47), получим:

Здесь использованы соотношения (5.50), (5.51) (производная геометрической прогрессии), а также из (5.47). Сравнивая это выражение с (5.51), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе. Обозначим матожидание случайной величины - время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100 %, очевидно, , в противном же случае

Пример 5.6. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно . Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок:

По формулам (5.47):

Вероятность отказа .

Относительная пропускная способность СМО

Абсолютная пропускная способность СМО

Машины в мин.

Среднее число машин в очереди находим по формуле (5.51)

т. е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (5.54)

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием . В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5.44), (5.45) и т. п.

Заметим, что при этом знаменатель в последней формуле (5.45) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т. е. при .

Может быть доказано, что есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что .

Если , то соотношения (5.47) принимают вид:

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому ,

Среднее число заявок в очереди получим из (5.51) при :

Среднее число заявок в системе по формуле (5.52) при

Среднее время ожидания получим из формулы

(5.53) при :

Наконец, среднее время пребывания заявки в СМО есть

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди . Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты каналов, остальные нет;

Заняты все каналов, свободных нет;

есть очередь:

Заняты все n каналов; одна заявка стоит в очереди;

Заняты все n каналов, r заявок в очереди;

Заняты все n каналов, r заявок в очереди.

ГСП приведен на рис. 5.9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 5.9. Многоканальная СМО с ожиданием

Граф типичен для процессов размножения и гибели, для которой решение ранее получено (5.29)-(5.33). Напишем выражения для предельных вероятностей состояний, используя обозначение : (здесь используется выражение для суммы геометрической прогрессии со знаменателем ).

Таким образом, все вероятности состояний найдены.

Определим характеристики эффективности системы.

Вероятность отказа. Поступившая заявка получает отказ, если заняты все каналов и все мест в очереди:

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем заявок в единицу времени, а СМО в целом обслуживает в среднем заявок в единицу времени. Разделив одно на другое, получим:

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (5.50), (5.51)-(5.53)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (5.59) только множителем , т. е.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

Системы с неограниченной длиной очереди . Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул (5.56) предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при . Допустив, что и устремив в формулах (5.56) величину m к бесконечности, получим выражения для предельных вероятностей состояний:

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (5.59):

а среднее время ожидания - из (5.60):

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Пример 5.7. Автозаправочная станция с двумя колонками () обслуживает поток машин с интенсивностью (машин в минуту). Среднее время обслуживания одной машины

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

Поскольку , очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (5.61) находим вероятности состояний:

Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО на интенсивность обслуживания :

Вероятность отсутствия очереди у АЗС будет:

Среднее число машин в очереди:

Среднее число машин на АЗС:

Среднее время ожидания в очереди:

Среднее время пребывания машины на АЗС:

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом заявок, одновременно находящихся в очереди). В такой СМО заявка, раз ставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Предположим, что имеется канальная СМО с ожиданием, в которой число мест в очереди не ограничено, но время пребывания заявки в очереди является некоторой случайной величиной со средним значением , таким образом, на каждую заявку, стоящую в очереди, действует своего рода пуассоновский «поток уходов» с интенсивностью заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 5.10.

Рис. 5.10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживании всех каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят заявок, то суммарная интенсивность потока уходов будет равна .

Как видно из графа, имеет место схема размножения и гибели; применяя общие выражения для предельных вероятностей состояний в этой схеме (используя сокращенные обозначения ) запишем:

Отметим некоторые особенности СМО с ограниченным ожиданием сравнительно с ранее рассмотренными СМО с «терпеливыми» заявками.

Если длина очереди не ограничена и заявки «терпеливы» (не уходят из очереди), то стационарный предельный режим существует только в случае (при соответствующая бесконечная геометрическая прогрессия расходится, что физически соответствует неограниченному росту очереди при ).

Напротив, в СМО с «нетерпеливыми» заявками, уходящими рано или поздно из очереди, установившийся режим обслуживания при достигается всегда, независимо от приведенной интенсивности потока заявок, не суммируя бесконечного ряда (5.63). Из (5.64) получаем:

а входящее в эту формулу среднее число занятых каналов можно найти как математическое ожидание случайной величины , принимающей значения с вероятностями :

В заключение заметим, что если в формулах (5.62) перейти к пределу при (или, что то же, при ), то при получатся формулы (5.61), т. е. «нетерпеливые» заявки станут «терпеливыми».

операции или эффективности системы массового обслуживания являются следующие.

Для СМО с отказами :

Для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способности теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными показателями являются:

Для СМО смешанного типа используются обе группы показателей: как относительная и абсолютная пропускная способности , так и характеристики ожидания.

В зависимости от цели операции массового обслуживания любой из приведенных показателей (или совокупность показателей) может быть выбран в качестве критерия эффективности.

Аналитической моделью СМО является совокупность уравнений или формул, позволяющих определять вероятности состояний системы в процессе ее функционирования и рассчитывать показатели эффективности по известным характеристикам входящего потока и каналов обслуживания.

Всеобщей аналитической модели для произвольной СМО не существует . Аналитические модели разработаны для ограниченного числа частных случаев СМО. Аналитические модели, более или менее точно отображающие реальные системы, как правило, сложны и труднообозримы.

Аналитическое моделирование СМО существенно облегчается, если процессы, протекающие в СМО, марковские (потоки заявок простейшие, времена обслуживания распределены экспоненциально). В этом случае все процессы в СМО можно описать обыкновенными дифференциальными уравнениями, а в предельном случае, для стационарных состояний - линейными алгебраическими уравнениями и, решив их, определить выбранные показатели эффективности.

Рассмотрим примеры некоторых СМО.

2.5.1. Многоканальная СМО с отказами

Пример 2.5 . Три автоинспектора проверяют путевые листы у водителей грузовых автомобилей. Если хотя бы один инспектор свободен, проезжающий грузовик останавливают. Если все инспекторы заняты, грузовик, не задерживаясь, проезжает мимо. Поток грузовиков простейший, время проверки случайное с экспоненциальным распределением.

Такую ситуацию можно моделировать трехканальной СМО с отказами (без очереди). Система разомкнутая, с однородными заявками, однофазная, с абсолютно надежными каналами.

Описание состояний:

Все инспекторы свободны;

Занят один инспектор;

Заняты два инспектора;

Заняты три инспектора.

Граф состояний системы приведен на рис. 2.11 .


Рис. 2.11.

На графе: - интенсивность потока грузовых автомобилей; - интенсивность проверок документов одним автоинспектором.

Моделирование проводится с целью определения части автомобилей, которые не будут проверены.

Решение

Искомая часть вероятности - вероятности занятости всех трех инспекторов. Поскольку граф состояний представляет типовую схему "гибели и размножения", то найдем , используя зависимости (2.2).

Пропускную способность этого поста автоинспекторов можно характеризовать относительной пропускной способностью :

Пример 2.6 . Для приема и обработки донесений от разведгруппы в разведотделе объединения назначена группа в составе трех офицеров. Ожидаемая интенсивность потока донесений - 15 донесений в час. Среднее время обработки одного донесения одним офицером - . Каждый офицер может принимать донесения от любой разведгруппы. Освободившийся офицер обрабатывает последнее из поступивших донесений. Поступающие донесения должны обрабатываться с вероятностью не менее 95 %.

Определить, достаточно ли назначенной группы из трех офицеров для выполнения поставленной задачи.

Решение

Группа офицеров работает как СМО с отказами, состоящая из трех каналов.

Поток донесений с интенсивностью можно считать простейшим, так как он суммарный от нескольких разведгрупп. Интенсивность обслуживания . Закон распределения неизвестен, но это несущественно, так как показано, что для систем с отказами он может быть произвольным.

Описание состояний и граф состояний СМО будут аналогичны приведенным в примере 2.5.

Поскольку граф состояний - это схема "гибели и размножения", то для нее имеются готовые выражения для предельных вероятностей состояния:

Отношение называют приведенной интенсивностью потока заявок . Физический смысл ее следующий: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

В примере .

В рассматриваемой СМО отказ наступает при занятости всех трех каналов, то есть . Тогда:

Так как вероятность отказа в обработке донесений составляет более 34 % (), то необходимо увеличить личный состав группы. Увеличим состав группы в два раза, то есть СМО будет иметь теперь шесть каналов, и рассчитаем :

Таким образом, только группа из шести офицеров сможет обрабатывать поступающие донесения с вероятностью 95 %.

2.5.2. Многоканальная СМО с ожиданием

Пример 2.7 . На участке форсирования реки имеются 15 однотипных переправочных средств. Поток поступления техники на переправу в среднем составляет 1 ед./мин, среднее время переправы одной единицы техники - 10 мин (с учетом возвращения назад переправочного средства).

Оценить основные характеристики переправы, в том числе вероятность в немедленной переправе сразу по прибытии единицы техники.

Решение

Абсолютная пропускная способность , т. е. все, что подходит к переправе, тут же практически переправляется.

Среднее число работающих переправочных средств:

Коэффициенты использования и простоя переправы:

Для решения примера была также разработана программа. Интервалы времени поступления техники на переправу, время переправы приняты распределенными по экспоненциальному закону.

Коэффициенты использования переправы после 50 прогонов практически совпадают: .

Максимальная длина очереди 15 ед., среднее время пребывания в очереди около 10 мин.

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью л и интенсивностью обслуживания µ.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

Канал свободен, очереди нет, ;

Канал занят обслуживанием, очереди нет, ;

  • - канал занят, одна заявка в очереди, ;
  • - канал занят, заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m>?:

Рис. 3.5

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем. Такая последовательность представляет собой сумму бесконечного числа членов при. Эта сумма сходится, если прогрессия, бесконечно убывающая при, что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому, следовательно, относительная пропускная способность, соответственно, а абсолютная пропускная способность

Вероятность пребывания в очереди k заявок равна:

Среднее число заявок в очереди -

Среднее число заявок в системе -

Среднее время пребывания заявки в системе -

Среднее время пребывания заявки с системе -

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при.